Orbital-based insights into parallel-displaced and twisted conformations in π-π interactions.

نویسندگان

  • Patricia B Lutz
  • Craig A Bayse
چکیده

Dispersion and electrostatics are known to stabilize π-π interactions, but the preference for parallel-displaced (PD) and/or twisted (TW) over sandwiched (S) conformations is not well understood. Orbital interactions are generally believed to play little to no role in π-stacking. However, orbital analysis of the dimers of benzene, pyridine, cytosine and several polyaromatic hydrocarbons demonstrates that PD and/or TW structures convert one or more π-type dimer MOs with out-of-phase or antibonding inter-ring character at the S stack to in-phase or bonding in the PD/TW stack. This change in dimer MO character can be described in terms of a qualitative stack bond order (SBO) defined as the difference between the number of occupied in-phase/bonding and out-of-phase/antibonding inter-ring π-type MOs. The concept of an SBO is introduced here in analogy to the bond order in molecular orbital theory. Thus, whereas the SBO of the S structure is zero, parallel displacement or twisting the stack results in a non-zero SBO and overall bonding character. The shift in bonding/antibonding character found at optimal PD/TW structures maximizes the inter-ring density, as measured by intermolecular Wiberg bond indices (WBIs). Values of WBIs calculated as a function of the parallel-displacement are found to correlate with the dispersion and other contributions to the π-π interaction energy determined by the highly accurate density-fitting DFT symmetry adapted perturbation theory (DF-DFT-SAPT) method. These DF-DFT-SAPT calculations also suggest that the dispersion and other contributions are maximized at the PD conformation rather than the S when conducted on a potential energy curve where the inter-ring distance is optimized at fixed slip distances. From these results of this study, we conclude that descriptions of the qualitative manner in which orbitals interact within π-stacking interactions can supplement high-level calculations of the interaction energy and provide an intuitive tool for applications to crystal design, molecular recognition and other fields where non-covalent interactions are important.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Influence of Cation-π Interactions on the Strength and Nature of Intramolecular O...H Hydrogen Bond in Orthohydroxy Benzaldehyde Compound

The influence of cation-π interactions on the strength and nature of intramolecular O...H hydrogen bond has been investigated by quantum chemical calculations in orthohydroxy benzaldehyde (HBA) compound. Ab initio calculations have been performed at MP2/6-311++G** level of theory. Vibrational frequencies and physical properties such as chemical potential and chemical hardness of these compounds...

متن کامل

Redox-Active Metal-Organic Nanostructure Polymers and Their Remarkable Electrochemical Behavior

A number of redox-active coordination polymers (CPs) or metal- organic frameworks (MOFs) have been successfully synthesized using transition metals and bridging ligands. This article aims to deal with gathering the aforementioned disperse issues regarding the electroactive CPs. It also goes towards illustrating the effects of various factors on the electrochemical behavior of CPs including...

متن کامل

Theoretical study of the effects of substituent and quadrupole moment on π-π stacking interactions with coronene

Stability of the π-π stacking interactions in the Ben||substituted-coronene and HFBen||substituted-coronene complexes was studied using the computational quantum chemistry methods (where Ben and HFBen are benzene and hexaflourobenzene, || denotes π-π stacking interaction, substituted-coronene is coronene molecule which substituted with four X groups, and X= NH2, CH3, OH, H, F, CF3, CN and NO). ...

متن کامل

Effects of Structure and Partially Localization of the π Electron Clouds of Single-Walled Carbon Nanotubes on the Cation-π Interactions

A C102H30 graphene sheet has been rolled up to construct Single-Walled Carbon NanoTube Fragments (SWCNTFs) as parts of armchair carbon nanotubes by computational quantum chemistry methods. Non-covalent cation-π interactions of the Na+ cation on the central rings of SWCNTFs have investigated. The binding energies of the Na+-SWCNTF complexes versus ...

متن کامل

A theoretical study on halogen-π interactions: X-C2-Y…C8H8 complexes

M06-2X functional was employed to study halogen-π interactions in X-C2-Y…C8H8 complexes (X, Y=H, F, Cl, and Br). In fact, interactions of mono- or di-halogenated acetylenes and planar cyclooctatetraene as an anti-aromatic π system were considered. Relationship between binding energies of the complexes and charge transfer effects was investigated. Also, electronic charge density values were calc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 23  شماره 

صفحات  -

تاریخ انتشار 2013